
BITING THE CMAKE BULLET
LEARNING A META-BUILD SYSTEM

FOR FUN AND NOT PROFIT

ThePhD
@thephantomderp

https://github.com/ThePhD
Boston C++ Meetup
February 6th, 2018

https://github.com/ThePhD


WHAT ARE WE DOING THIS FOR?

2



RUNNING LIBRARY TESTS

• Header-only library still needed to build tests

• Verify we are correct on all platforms

• Use appveyor / travis-ci

• Tests are not very complicated

• But TONS of target platforms

3



TARGETS

• Compilers

• GCC 7.x, 6.x, 5.x, 4.9 || LLVM 5.x, 4,x, 3.9.x, 3.8.x, 3.7.x, 3.6.x || VC++ v141, v140, v140_xp

• Platforms

• Windows – Visual Studio (MSBuild) vs. Not-Visual Studio (MinGW, etc.)

• Linux (compiler-based), Mac OSX – Xcode 9.x, 8.x, 7.x, 6.x

• Debug + Release, x86 + x64

• Lua Version – 5.1, 5.2, 5.3, JIT-2.0, JIT-2.1 4



FIRST “SOLUTION”

• Python “bootstrap.py”

• Ad-hoc home rolled meta build system creating ninja.build file to run tests

• Worked well enough to get off the ground without committing to a build system (back in 2014/2015)

• CMake recommended by contributor in early 2016

• Rejected at the time due to stepping beyond just creating test harness

5



PROBLEMS

• Unable to support all the platforms

• Okay for GCC/LLVM and Linux

• VC++ and MSBuild?

• Tacked-on spaghetti code for managing dependencies

• Depended on fetched Lua using package manager

• Expected everything to be laid out before hand

6



DIVING INTO CMAKE
CAN CMAKE SOLVE OUR PROBLEMS?

7



THE FOUNDATION: PROJECT WITH TARGETS

• Project

• Single top-level declaration, required CMake version, project version, languages utilized (!!)

• One project, mutiple targets

• Can set configuration for project version and how dependencies are managed (complex)

• Targets (Executables and Libraries)

• Transparently link outputs to inputs with a single command (no copy)

• Imported/Interface Libraries to handle prebuilt-objects/header-only libraries (!!)

8



DIRECTORY-BASED

• Subdirectories included with add_subdirectory

• Each directory represents a project

• One CMakeLists.txt in directory

• All variables directory-scoped, can pass up with set(NAME VALUE PARENT_SCOPE)

• Targets added with

• add_executable(name …) – supply list of sources to compile executable

• add_library(name TYPE …) – supply list of sources to compile library of TYPE (SHARED/STATIC)

• add_custom_target(name …) – execute custom command / sequence of commands

9



QUERY/MANIPULATE TARGETS

• target_sources(target sources…)

• Append sources to target for compilation

• Good for conditional inclusion of additional source files

• target_include_directories(target PRIVATE|PUBLIC|INTERFACE dirs…)

• Add include directories with the propagation modifier

• target_link_libraries(target [PRIVATE|PUBLIC|INTERFACE library_target1]…)

• Link libraries (and their outputs) into the target during build with the propagation modifier

10



QUERY/MANIPULATE TARGETS II

• get_target_properties, set_target_properties

• Bread and butter of setting languages, standards, and similar

• Pull out a single property into a variable, or set multiple

• Different properties based on target type are valid (INCLUDE_DIRECTORIES)

11



CODE REUSE

• include(file)

• Like C++ include – copy-paste into current scope

• add_subdirectory(directory [binary_output_directory])

• Takes CMakeLists.txt from specified directory (local or absolute)

• Macros, Functions

• Define and call in your own code

• Note that Macros DO NOT introduce a new scope: functions do (useful later)

12



HANDLING PREINSTALLED LIBRARIES

• find_package(NAME [[VERSION] [EXACT]] [REQUIRED])

• Very big and present since earliest days of CMake

• Using them is fairly simple

• find_package(Threads) – finds the threading library (pthreads or similar)

• find_package(Lua 5.3 EXACT REQUIRED) – finds Lua, fails build if 5.3 exactly cannot be found on system

• Implementation a little more complex

13



EXTERNALPROJECT

• Standard CMake Module – include(ExternalProject)

• Allows git/mercurial/svn/cvs/raw-link clone/checkout/download (with HTTPS or MDS/SHA1 hash verification)

• Performs steps in the order of download, configure, build, install, and test

• Used easily for download of Lua/LuaJIT

• Lua: listed sources and compiled directly (written in ANSI C)

• LuaJIT: too complex to just “pull, get sources, build”

• Linux - Run “make”, use CMake copy operation to move outputs to expected location 

• Windows – Run “msvcbuild.bat”, use CMake copy operation to move outputs to expected location

14



EXTERNALPROJECT

15



EXTERNALPROJECT_ADDSTEP

• Allows for additional steps to be tacked onto an external project

16



AD-HOC HACKS

• Can set settings by appending to command line 
or prebuilt-variables

• CMAKE_*

• Inspect in-built variables such as if (MSVC)

• Older functions which affect entire project

• add_definitions

• add_compile_options

17



AD HOC HACKS II

• Targets sometimes do not output to same location

• Causes problems when running executable that relies on multiple DLLs

• Simple fix: specify project output directory at top of project

18



FUTURE LEARNING - GENERATOR EXPRESSIONS

• Apparently very powerful

• Meant to make things simpler and more in-line

• Only works in certain contexts, enforcing confusion

19



IT (MOSTLY) WORKS!

20



READ THE DOCS!

https://cmake.org/cmake/help/latest/

21

https://cmake.org/cmake/help/latest/


FUTURE PROJECTS

• Sol2 interop and require_dll examples

• https://github.com/ThePhD/sol2/tree/develop/examples/require_dll_example

• https://github.com/ThePhD/sol2/tree/develop/examples/interop

• Lua Benchmarking Library

• https://github.com/ThePhD/lua-bench

22

https://github.com/ThePhD/sol2/tree/develop/examples/require_dll_example
https://github.com/ThePhD/sol2/tree/develop/examples/interop
https://github.com/ThePhD/lua-bench


THANK YOU!
QUESTIONS? AND, IF TIME PERMITS, AN EXAMPLE?

23


